91制片厂

Dr. Sujing Wang

Dr. Wang

General Information

Education

  • Ph.D. Computer Science, University of Houston, Houston, TX
  • M.S. Computer Science, Universtiy of Houston, Houston, TX

Research Interests

  • Big Data
  • Data Science
  • Data Mining and Knowledge Discovery
  • Geographic Information Systems (GIS)
  • Computer Modeling and Simulation

Selected Publications

A. R. Pokhrel, S. Wang*, “Design of Fast and Scalable Clustering Algorithm on Spark”, in Proceedings of ACM 2020 the 4th International Conference on Cloud and Big Data Computing (ICCBDC 2020), August 26-28, 2020, Liverpool, United Kingdom.

S. Wang*, S. Andrei, O. Urbina, and D. Sisk, “Introducing STEM to 7th Grade Girls using SeaPerch and Scratch”, in Proceedings of 2020 the 50th IEEE Frontiers in Education (FIE) International Conference, Oct. 21-24, 2020, Uppsala, Sweden.

R. Banerjee, K. Elgarroussi, S. Wang, A. Talari, Y. Zhang, and C. F. Eick*, “K2: A Novel Data Analysis Framework to Understand US Emotions in Space and Time”, International Journal of Semantic Computing, 13(01):111-133, 2019.

S. Wang*, S. Andrei, O. Urbina, and D. Sisk, “A Programming Academy for 6th Grade Females to Increase Knowledge and Interests in Computer Science”, in Proceedings of 2019 the 49th IEEE Frontiers in Education (FIE) International Conference, October 16-19, 2019, Cincinnati, OH, USA.

S. Wang* and C. F. Eick, “A Data Mining Framework for Environmental and Geo-Spatial Data Analysis”, International Journal of Data Science and Analytics (2018) 5:83.

 K. Elgarroussi, S. Wang*, R. Banerjee, and C. F. Eick*, “Aconcagua: A Novel Spatio-temporal Emotion Change Analysis Framework”, in Proceedings of 2018 the 26th ACM International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL 2018) Workshop on AI for Geographic Knowledge Discovery , Seattle, Washington, USA, November 6-9, 2018.

A. M. Aryal, S. Wang*, “Spark-SNN: Density-based Clustering on Spark”, in Proceedings of 2018 IEEE 3rd International Conference on Big Data Analysis (ICBDA 2018), Mar. 9-12, 2018.

R. Banerjee, K. Elgarroussi, S. Wang*, Y. Zhang and C. F. Eick*, “Tweet Emotion Mapping: Understanding US Emotions in Time and Space”, in Proceedings of 2018 IEEE Frist International Conference on Artificial Intelligence and Knowledge Engineering (AIKE 2018), Laguna Hills, CA, USA, Sept. 26-28, 2018, pp. 93-100, doi: 10.1109/AIKE.2018.00021.

K. Kang, S. Wang*, “Analyze and Predicate for College Student Online Program Dropout”, in Proceedings of ACM 2nd International Conference of Compute and Data Analysis (ICCDA 2018), Dekalb, IL, USA, Mar. 23-25, 2018.

A. M. Aryal and S. Wang*, “Discovery of Patterns in Spatial-temporal Data Using Clustering Techniques”, in Proceedings of 2017 IEEE 2nd International Conference on Image, Vision and Computing Workshops on Database and Data Mining (ICDDM 2017), June 2-4, 2017.

Y. Zhang, S. Wang*, A. M. Aryal, and C. F. Eick*, “Serial versus Parallel: a Comparison of Spatio-temporal Clustering Approaches”, in Proceedings of 2017 International Symposium on Methodologies for Intelligent Systems (Foundations of Intelligent Systems), June 26-29, 2017.

S. Wang* and C. F. Eick, “MR-SNN: Design of Parallel Shared Nearest Neighbor Clustering on Hadoop”, in Proceedings of 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA 2017), March 10-12, 2017.

S. Wang*, C. F. Eick, “A Geospatial Clustering and Analysis Framework for Mining Ozone Pollution Data ”, in Proceedings of Geocomputing 2015, Dallas, TX, USA, May 20-23, 2015.

S. Wang*, C. F. Eick, “A Polygon-based Clustering and Analysis Framework for Mining Spatial Datasets,” GeoInformatica, 18(3), pp 569-594, 2014, DOI: 10.1007/s10707-013-0190-2.

S. Wang*, T. Cai, C. F. Eick, “New Clustering and Analyzing Technique for Mining Multi-source Enriched Geo-spatial Data”, in Proceedings of the ACM SIGMOD/PODS Workshop on Managing and Mining Enriched Geo-Spatial Data, Snowbird, Utah, USA,  June 22-27, 2014.